Collection of usefull `Optimizers` their variants.
   
    
    
    
    
   
Ranger[source]
Ranger(params:Iterable,betas:Tuple[float,float]=(0.95, 0.999),eps:float=1e-05,k:int=6,alpha:float=0.5,lr=0.001,weight_decay=0)
Convenience method for Lookahead with RAdam
class RangerGC[source]
RangerGC(params:Iterable,lr:float=0.001,alpha:float=0.5,k:int=6,N_sma_threshhold:int=5,betas:Tuple[float,float]=(0.95, 0.999),eps:float=1e-05,weight_decay:Union[float,int]=0,use_gc:bool=True,gc_conv_only:bool=False) ::Optimizer
Ranger deep learning optimizer - RAdam + Lookahead + Gradient Centralization, combined into one optimizer.
Source - https://github.com/lessw2020/Ranger-Deep-Learning-Optimizer/blob/master/ranger/ranger.py
class SGDP[source]
SGDP(params:Iterable,lr=<required parameter>,momentum:Union[float,int]=0,dampening:Union[float,int]=0,weight_decay:Union[float,int]=0,nesterov:bool=False,eps:float=1e-08,delta:float=0.1,wd_ratio:Union[float,int]=0.1) ::Optimizer
SGDP Optimizer Implementation copied from https://github.com/clovaai/AdamP/blob/master/adamp/sgdp.py
class AdamP[source]
AdamP(params:Iterable,lr:Union[float,int]=0.001,betas:Tuple[float,float]=(0.9, 0.999),eps:float=1e-08,weight_decay:Union[float,int]=0,delta:float=0.1,wd_ratio:float=0.1,nesterov:bool=False) ::Optimizer
AdamP Optimizer Implementation copied from https://github.com/clovaai/AdamP/blob/master/adamp/adamp.py