Collection of usefull `Optimizers` their variants.

Ranger[source]

Ranger(params:Iterable, betas:Tuple[float, float]=(0.95, 0.999), eps:float=1e-05, k:int=6, alpha:float=0.5, lr=0.001, weight_decay=0)

Convenience method for Lookahead with RAdam

class RangerGC[source]

RangerGC(params:Iterable, lr:float=0.001, alpha:float=0.5, k:int=6, N_sma_threshhold:int=5, betas:Tuple[float, float]=(0.95, 0.999), eps:float=1e-05, weight_decay:Union[float, int]=0, use_gc:bool=True, gc_conv_only:bool=False) :: Optimizer

Ranger deep learning optimizer - RAdam + Lookahead + Gradient Centralization, combined into one optimizer.

Source - https://github.com/lessw2020/Ranger-Deep-Learning-Optimizer/blob/master/ranger/ranger.py

class SGDP[source]

SGDP(params:Iterable, lr=<required parameter>, momentum:Union[float, int]=0, dampening:Union[float, int]=0, weight_decay:Union[float, int]=0, nesterov:bool=False, eps:float=1e-08, delta:float=0.1, wd_ratio:Union[float, int]=0.1) :: Optimizer

SGDP Optimizer Implementation copied from https://github.com/clovaai/AdamP/blob/master/adamp/sgdp.py

class AdamP[source]

AdamP(params:Iterable, lr:Union[float, int]=0.001, betas:Tuple[float, float]=(0.9, 0.999), eps:float=1e-08, weight_decay:Union[float, int]=0, delta:float=0.1, wd_ratio:float=0.1, nesterov:bool=False) :: Optimizer

AdamP Optimizer Implementation copied from https://github.com/clovaai/AdamP/blob/master/adamp/adamp.py